Home
Class 12
MATHS
If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] then...

If `A=[(2,-2,-4),(-1,3,4),(1,-2,-3)]` then A is

Promotional Banner

Similar Questions

Explore conceptually related problems

If P={:[(2,-2,-4),(-1,3,4),(1,-2,-3)]:} then show that, p^(2)=p .

If P=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}] , then P^(5) equals-

If P=[(2, -2, -4),(-1, 3, 4),(1, -2, -3)], then P^(5) equals

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

Express the matrix B=[(2,-2,-4),(-1,3,4),(1,-2,-3)] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix B=[(2,-2,-4),(-1,3,4),(1,-2,-3)] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix B=[(2,-2,-4),(-1,3,4),(1,-2,-3)] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}] as the sum of a symmetric and a skew symmetric matrix.

If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)] are two matrices, then the value of the determinant (A+A^(2)B^(2)+A^(3)+A^(4)B^(4)+"………"20" terms")

If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)] are two matrices, then the value of the determinant (A+A^(2)B^(2)+A^(3)+A^(4)B^(4)+"………"20" terms")