Home
Class 12
MATHS
If f:R to R satisfies f(x+y)=f(x)+f(y),...

If `f:R to R ` satisfies f(x+y)=f(x)+f(y), for all x, y `in` R and f(1)=7, then `sum_(r=1)^(n)f( r)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

if f: 9R to 9R satisfies f(x+y)=f(x)+f(y) , for all x, y , in 9 R and f(1)=10 then sum_(r=1)^(n) f(r)

If f:R rarr R satisfies f(x+y)=f(x)+f(y), for all x,y in R and f(1)=2 then sum_(r=1)^(7)f(1)

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,yinRandf(1)=7 , then sum_(r=1)^(n)f(r) is :

If f:RtoR satisfies f(x+y)=f(x)+f(y), for all real x,y and f(1)=m. then: sum_(r=1)^(n)f(r)=

lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1) = 4, then sum_(r=1)^n f(r) is

If f:R rarr R satisfies,f(x+y)=f(x)+f(y),AA x,y in R and f(1)=4,thensum_(r=1)^(n)f(r)

Let f be a function satisfying f(x+y)=f(x) *f(y) for all x,y, in R. If f (1) =3 then sum_(r=1)^(n) f (r) is equal to