Home
Class 12
MATHS
Let A = [{:("cos"alpha, -"sin"alpha), ("...

Let `A = [{:("cos"alpha, -"sin"alpha), ("sin"alpha, "cos"alpha"):}], (alpha in R)` such that `A^(32) = [{:(0, -1), (1, 0):}]`. Then, a value of `alpha` is

A

`(pi)/(32)`

B

0

C

`(pi)/(64)`

D

`(pi)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\alpha\) such that the matrix \(A^{32}\) equals \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\). Given the matrix: \[ A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] ### Step 1: Calculate \(A^2\) To find \(A^{32}\), we first calculate \(A^2\): \[ A^2 = A \cdot A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] Using matrix multiplication: \[ A^2 = \begin{pmatrix} \cos^2 \alpha - \sin^2 \alpha & -2\sin \alpha \cos \alpha \\ 2\sin \alpha \cos \alpha & \cos^2 \alpha - \sin^2 \alpha \end{pmatrix} \] ### Step 2: Use Trigonometric Identities We can apply the double angle formulas: \[ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \] \[ \sin 2\alpha = 2\sin \alpha \cos \alpha \] Thus, we can express \(A^2\) as: \[ A^2 = \begin{pmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{pmatrix} \] ### Step 3: Generalize to \(A^n\) Continuing this pattern, we find that: \[ A^n = \begin{pmatrix} \cos n\alpha & -\sin n\alpha \\ \sin n\alpha & \cos n\alpha \end{pmatrix} \] ### Step 4: Calculate \(A^{32}\) Now we can express \(A^{32}\): \[ A^{32} = \begin{pmatrix} \cos 32\alpha & -\sin 32\alpha \\ \sin 32\alpha & \cos 32\alpha \end{pmatrix} \] ### Step 5: Set Equal to Given Matrix We know: \[ A^{32} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] This gives us two equations: 1. \(\cos 32\alpha = 0\) 2. \(\sin 32\alpha = 1\) ### Step 6: Solve the Equations From \(\cos 32\alpha = 0\), we have: \[ 32\alpha = \frac{\pi}{2} + k\pi \quad (k \in \mathbb{Z}) \] From \(\sin 32\alpha = 1\), we have: \[ 32\alpha = \frac{\pi}{2} + 2m\pi \quad (m \in \mathbb{Z}) \] ### Step 7: Equate and Solve for \(\alpha\) Setting the two expressions for \(32\alpha\) equal: \[ \frac{\pi}{2} + k\pi = \frac{\pi}{2} + 2m\pi \] This simplifies to: \[ k\pi = 2m\pi \implies k = 2m \] ### Step 8: Find \(\alpha\) Now, we can solve for \(\alpha\): \[ 32\alpha = \frac{\pi}{2} + 2m\pi \implies \alpha = \frac{\pi}{64} + \frac{m\pi}{16} \] ### Step 9: Find a Specific Value of \(\alpha\) Choosing \(m = 0\): \[ \alpha = \frac{\pi}{64} \] Thus, a value of \(\alpha\) is: \[ \alpha = \frac{\pi}{64} \]

To solve the problem, we need to find the value of \(\alpha\) such that the matrix \(A^{32}\) equals \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\). Given the matrix: \[ A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] ### Step 1: Calculate \(A^2\) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Types of Matrices, Addition, Substraction, Multiplication and Transposse of a Matrix (Objective Question II)|3 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Types of Matrices, Addition, Substraction, Multiplication and Transposse of a Matrix (Passage Based Problems)|6 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Integer Type Questions)|1 Videos
  • MISCELLANEOUS

    IIT JEE PREVIOUS YEAR|Exercise MISCELLANEOUS|87 Videos

Similar Questions

Explore conceptually related problems

Let A = [{:(cos alpha,- sin alpha ), ( sin alpha , cos alpha ):}], (a in R) such that A ^(32) = [{:(0,-1), (1, 0):}] is the value of alpha is (pi)/(2^(k)), then the value of k is

Evaluate |["cos" alpha, -"sin"alpha], ["sin"alpha, "cos"alpha]|

Let A=([cos alpha,-sin alphasin alpha,cos alpha]),(alpha in R) such that A^(32)=([0,-11,0]). Then a value of alpha is:

If A_(alpha), = [{:(cos alpha , sin alpha),(-sin alpha , cos alpha):}] , then

If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

If A = [(cos alpha,sin alpha),(-sin alpha,cos alpha)] , then A^(10) = .........

Let A_(alpha)=[[cos alpha,-sin alpha,osin alpha,cos alpha,00,0,1]]

A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] , then find | A |