Home
Class 12
MATHS
let z= (-1+sqrt(3i))/2, where i=sqrt(-1)...

let `z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)]` and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which `P^2=-I` is

Text Solution

Verified by Experts

The correct Answer is:
1

Here, `z = (-1 + isqrt(3))/(2) = omega`
`therefore P = [{:((-omega)^(r), omega^(2s)),(omega^(2s), omega^(r)):}]`
`P^(2) = [{:((-omega)^(r), omega^(2s)),(omega^(2s), omega^(r)):}][{:((-omega)^(r), omega^(2s)),(omega^(2s), omega^(r)):}]`
`= [{:(omega^(2r) + omega^(4s), omega^(r+2s)[(-1)^(r) + 1]),(omega^(r+2s)[(-1)^(r) + 1], omega^(4s) + omega^(2r)):}]`
Given, `P^(2) = -I`
`therefore omega^(2r) + omega^(4s) = -1 " and " omega^(r+2s)[(-1)^(r) + 1]=0`
Since, `r in {1, 2, 3) " and " (-1)^(r) + 1 = 0`
`rArr r = {1, 3}`
Also, `omega^(2r) + omega^(4s) = -1`
If r = 1, then `omega^(2) + omega^(4s) = -1`
which is only possible, when s = 1
As, `omega^(2) + omega^(4) = -1`
`therefore r = 1, s = 1`
Again, if r = 3, then
`omega^(6) + omega^(4s) = -1`
`rArr omega^(4s) = -2 " " ["never possible"]`
`therefore r ne 3`
`rArr (r,s) = (1,1)` is the only solution.
Hence, the total number of ordered pairs is 1.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let z = (-1 + sqrt(3i))/(2) , where i= sqrt(-1) , and r,s in {1,2,3} . Let P =:[((-z)^(r) ,z^(2s)),(z^(2s), z^(r))] and I be the identity matrix of order 2 .Then the total number of ordered pairs (r,s) for which p^(2) = - I is ______

If z=(-2(1+2i))/(3+i) where i=sqrt(-1) then argument theta(-pilt thetalepi) of z is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

If z satisfies |z-1|<|z+3| then omega=2z+3-i, (where i=sqrt(-1) ) sqtisfies

Let z=((1+i)^(2))/(a-i),(a>0) and |z|=sqrt((2)/(5)) then z is equal to