Home
Class 12
MATHS
The determinants |{:(1,a, bc),(1, b, ca)...

The determinants `|{:(1,a, bc),(1, b, ca),(1, c, ab):}| " and "|{:(1,a, a^(2)),(1, b, b^(2)),(1, c, c^(2)):}| ` are not identically equal.

Text Solution

Verified by Experts

Let `Delta = |{:(1,a, bc),(1, b, ca),(1, c, ab):}| = (1)/(abc)|{:(a,a^(2), abc),(b, b^(2), abc),(c, c^(2), abc):}| `
Applying `R_(1) to aR_(1), R_(2) to b R_(2), R_(3) to Cr_(3)`
`(1)/(abc)*abc|{:(a,a^(2), 1),(b, b^(2), 1),(c, c^(2), 1):}| = |{:(1,a, a^(2)),(1, b, b^(2)),(1, c, c^(2)):}| `
`therefore |{:(1,a, bc),(1, b, ca),(1, c, ab):}| = |{:(1,a, a^(2)),(1, b, b^(2)),(1, c, c^(2)):}|`
Hence, statement is false.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=0

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|

(1)/(a),a^(2),bc(1)/(b),b^(2),ca(1)/(c),c^(2),ab]|

|[1,a, bc] ,[1, b, ca], [1, c, ab]| = (a-b)(b-c)(c-a)

det[[1,a,a^(2)+bc1,b,b^(2)+ac1,c,c^(2)+ab]] is equal to

Delta=det[[1,a,bc1,b,ca1,c,ab]]