Home
Class 12
MATHS
A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"s...

`A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"sin"t),(e^(t)-e^(-t), "cos"t-e^(-t)"sin"t, -e^(-t)"sin"t + e^(-t)"cos"t),(e^(t), 2e^(-t)"sin"t, -2e^(-t)"cos"t):}]"then A is"`

A

invertible only when `t =pi`

B

invertible for every `t in R`

C

not invertible for any ` t in R`

D

invertible only when ` t = (pi)/(2)`

Text Solution

Verified by Experts

`|A| = |{:(e^(t), " "e^(-t)"cos"t, " "e^(-t)"sin"t),(e^(t), " "-e^(-t)"cos"t-e^(-t)"sin"t,-e^(-t)"sin"t+e^(-t)"cos"t),(e^(t), " " 2e^(-t)"sin"t, " "-2e^(-t)"cos"t):}|`
`=(e^(t))(e^(-t))(e^(-t)) |{:(1, " cos"t, " sin"t),(1, -"cos"t-"sin"t,-"sin"t+"cos"t),(1, " "2"sin"t, " "-2"cos"t):}| " "("taking common from each column")`
Applying `R_(2) to R_(2) -R_(1) " and " R_(3) to R_(3) -R_(1), " we get " [because e^(t-t) =e^(0) = 1]`
`=e^(-t)|{:(1, " cos"t, " sin"t),(0, -2"cos"t-"sin"t,-2"sin"t+"cos"t),(0, " "2"sin"t-"cos"t, -2"cos"t-"sin"t):}|`
` =e^(-t)((2"cos"t + "sin"t)^(2) + (2"sin"t - "cos"t)^(2)) " " ("expanding along column 1")`
`= e^(-t) (5"cos"^(2)t + 5"sin"^(2)t)`
`= 5e^(-t) " " (because "cos"^(2)t + "sin"^(2)t = 1)`
`rArr |A| = 5e^(-t) ne 0 " for all"t in R`
`therefore "A is invertible for all "t in R " "[because "If"|A| ne 0, "then A is invertible"]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise ADJOINT AND INVERSE OF A MATRIX (OBJECTIVE QUESTIONS II)|3 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise ADJOINT AND INVERSE OF A MATRIX (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise Properties of Determinants (Integer Type Question)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Integer Type Questions)|1 Videos
  • MISCELLANEOUS

    IIT JEE PREVIOUS YEAR|Exercise MISCELLANEOUS|87 Videos

Similar Questions

Explore conceptually related problems

int e^(t)(cost-sin t)dt

int(2e^(t))/(e^(3t)-6e^(2t)+11e^(t)-6)dt

Matrix [[e^t,e^(-t)(sint-2cost),e^(-t)(-2sint-cost)],[e^t,-e^(-t)(2sint+cost),e^(-t)(sint-2cost)],[e^t,e^(-t)cost,e^(-t)sint]] is invertible. (1) only id t=pi/2 (2) only y=pi (3) t in R (4) t !in R

e^(x)"cos x w.r.t."e^(x)sinx

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

The equation x = (e ^(t) + e ^(-t))/(2), y = (e ^(t) -e^(-t))/(2), t in R, represents

If x=e^(sin 3t), y=e^(cos,3t),then (dy)/(dx)=

If x=e^(sin 3t) y= e ^(cos , 3t) ,then (dy)/(dx)=