Home
Class 12
MATHS
For any positive integer n, define f(n)...

For any positive integer n, define ` f_(n) : (0, infty ) to R ` as `f_(n)(x) = sum_(j=1)^(n) tan^(-1). (1/(1+(x+j)(x+j-1))) ` for all ` x in (0, infty)`.
(Here, the inverse trigonometric function ` tan^(-1) ` x assumes values in `(- pi/2, pi/2) )`. Then, which of the following statement (s) is (are) TRUE?

A

`sum_(j=1)^(5) tan^(2) (f_(j)(0)) = 55`

B

`sum_(j=1)^(10) (1+f'_(j) (0)) sec^(2) (f_(j) (0)) = 10`

C

For any fixed positive integer `n underset(x to infty) lim tan (f_(n) (x)) = 1/n`

D

For any fixed positive interger ` n, underset( x to infty) lim sec^(2) (f_(n)(x)) = 1`

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
` f_(n) (x) = underset(j=1) overset(n) sum tan^(-1) (1/(1+(x+j)(x+j-1)))"for all " x in(0,infty)`
`rArr f_(n) (x) =underset (j=1)overset(n) sum tan^(-1). (((x+j)-(x+j-1))/(1+(x+j)(x+j-1)))`
` rArr f_(n)(x) = underset(j=1) overset(n) sum [tan^(-1)(x+j)-tan^(-1)(x+j-1)]`
` rArr f_(n)(x) = (tan^(-1)(x+1) - tan^(-1) x) `
`+(tan^(-1)(x+2)-tan^(-1)(x+1))`
`+(tan^(-1)(x+3)-tan^(-1)(x+2))`
`+...+ (tan^(-1)(x+n) - tan^(-1)(x+n-1))`
` rArr f_(n) (x) = tan^(-1) (x+n) - tan^(-1) x`
This statement is false as ` x ne 0.i.e., x in (0, infty)`.
(b) This statement is also false as ` 0 !in (0, infty)`
(c ) `f_(n) (x) = tan^(-1)(x+n) - tan^(-1) x`
`underset(x to infty) lim tan (f_(n) (x)) = underset(x to infty) lim tan (tan^(-1) (x+n) - tan^(-1) x)`
` rArr underset( x to infty) lim tan(f_(n)(x)) = underset (x to infty) lim tan (tan^(-1) n/(1+nx+x^(2))`
` = underset( x to infty) lim n/(1+ nx + x^(2)) = 0`
` :. ` (c ) statement is false.
(d) `underset(x to infty) lim sec^(2) (f_(n)(x)) = underset(x to infty) lim (1 + tan^(2) f_(n) (x))`
` = 1+ underset(x to infty) lim tan^(2) (f_(n) (x)) = 1 + 0 = 1`
`:.` (d) statement is true.
Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive integer n , define f_n :(0,oo)rarrR as f_n(x)=sum_(j=1)^ntan^(-1)(1/(1+(x+j)(x+j-1))) for all x in (0, oo) . Here, the inverse trigonometric function tan^(-1)x assumes values in (-pi/2,pi/2)dot Then, which of the following statement(s) is (are) TRUE? sum_(j=1)^5tan^2(f_j(0))=55 (b) sum_(j=1)^(10)(1+fj '(0))sec^2(f_j(0))=10 (c) For any fixed positive integer n , (lim)_(xrarroo)tan(f_n(x))=1/n (d) For any fixed positive integer n , (lim)_(xrarroo)sec^2(f_n(x))=1

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

sum_(r=1)^(n)tan((x)/(2^(r)))sec((x)/(2^(r-1)));r,n in N

For any positive integer n . let S_n:(0,oo) to R be defined by S_n(x)=sum_(k=1)^n Cot^-1((1+k(k+1)x^2)/x) where for any x in R , cot^-1x in (0,pi) and tan^-1(x) in (-pi/2, pi/2) .Then which of the following statement is(are TRUE ?

Let the function f(x) = tan^(1-) (sin x + cos x) be defined on [ 0, 2 pi] Then f(x) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

If f (tan x) = cos 2x , x != (2n + 1) pi/2, n in I then incorrect statement is