Home
Class 12
MATHS
Use the formula lim(x to 0 ) (a^(x) - ...

Use the formula ` lim_(x to 0 ) (a^(x) - 1) / x log_(e) a`, to find ` lim_( x to 0) (2^(x)-1)/((1+x)^(1//2) - 1) `.

Text Solution

Verified by Experts

The correct Answer is:
`log_(e)4`

`underset( x to 0) lim (2^(x) - 1)/(sqrt(1+x)-1 ) xx(sqrt(1+x)+1)/(sqrt(1+x)+1) = underset(x to 0)lim ((2^(x)-1)(sqrt(1+x)+1))/x `
` = log_(e) (2)*(2)`
` = 2 log_(e) 2 = log_(e) 4`
Promotional Banner

Similar Questions

Explore conceptually related problems

Use formula lim_(x rarr0)(a^(x)-1)/(x)=log(a) to find lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate: lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

Evaluate : lim_(x to 0)(e^(x)-1)/sqrt(1-cosx) .

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

Evaluate lim_(xto0) (e-(1+x)^(1//x))/(x) .

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x)=)

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

lim_(x rarr0)(1+x)^((1)/(x))=e