Home
Class 12
MATHS
Find lim( x to 0) { tan (pi/4 + x)}^(1...

Find ` lim_( x to 0) { tan (pi/4 + x)}^(1//x) ` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 0} \left( \tan\left(\frac{\pi}{4} + x\right) \right)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Identify the Form First, we substitute \( x = 0 \): \[ \tan\left(\frac{\pi}{4} + 0\right) = \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, the expression becomes \( 1^{\infty} \), which is an indeterminate form. ### Step 2: Rewrite the Limit We can rewrite the limit using the exponential function: \[ y = \left( \tan\left(\frac{\pi}{4} + x\right) \right)^{\frac{1}{x}} \implies \ln y = \frac{1}{x} \ln\left( \tan\left(\frac{\pi}{4} + x\right) \right) \] Now we need to find: \[ \lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{\ln\left( \tan\left(\frac{\pi}{4} + x\right) \right)}{x} \] ### Step 3: Apply L'Hôpital's Rule Since substituting \( x = 0 \) gives us \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\ln\left( \tan\left(\frac{\pi}{4} + x\right) \right)}{x} = \lim_{x \to 0} \frac{\frac{d}{dx}\left(\ln\left( \tan\left(\frac{\pi}{4} + x\right)\right)\right)}{\frac{d}{dx}(x)} \] ### Step 4: Differentiate the Numerator Using the chain rule, we differentiate: \[ \frac{d}{dx}\left(\ln\left( \tan\left(\frac{\pi}{4} + x\right)\right)\right) = \frac{1}{\tan\left(\frac{\pi}{4} + x\right)} \cdot \sec^2\left(\frac{\pi}{4} + x\right) \] Thus, we have: \[ \lim_{x \to 0} \frac{\sec^2\left(\frac{\pi}{4} + x\right)}{\tan\left(\frac{\pi}{4} + x\right)} \] ### Step 5: Evaluate the Limit Now substituting \( x = 0 \): \[ \sec^2\left(\frac{\pi}{4}\right) = 2 \quad \text{and} \quad \tan\left(\frac{\pi}{4}\right) = 1 \] So the limit becomes: \[ \lim_{x \to 0} \frac{2}{1} = 2 \] ### Step 6: Exponentiate to Find \( y \) Now we have: \[ \ln y = 2 \implies y = e^2 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \left( \tan\left(\frac{\pi}{4} + x\right) \right)^{\frac{1}{x}} = e^2 \] ---

To find the limit \( \lim_{x \to 0} \left( \tan\left(\frac{\pi}{4} + x\right) \right)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Identify the Form First, we substitute \( x = 0 \): \[ \tan\left(\frac{\pi}{4} + 0\right) = \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, the expression becomes \( 1^{\infty} \), which is an indeterminate form. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

Find lim_(x rarr0){tan((pi)/(4)+x)}^(1/x)

lim_(x to 1) (1 - x) tan ((pi x)/2) =… .

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

lim_(x rarr 0)tan(pi/4+x)^(1/x)=

lim_ (x rarr0) {tan ((pi) / (4) + x)} ^ ((1) / (x))

lim_(x rarr 1) (x-1) tan((pi x)/2)

lim_(x rarr 1) (1-x) tan((pi x)/2)

(lim)_(x->0)[tan(pi/4+x)]^(1/x)

Find the value of lim_(x to oo) (pi/4 - "tan"^(-1) (x+1)/(x+2)) .