Home
Class 12
MATHS
Find the values of a and b so that the ...

Find the values of a and b so that the function
`f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):}`
is continuous for ` 0 le x le pi`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} x + a\sqrt{2} \sin x & \text{for } 0 \leq x \leq \frac{\pi}{4} \\ 2x \cot x + b & \text{for } \frac{\pi}{4} < x \leq \frac{\pi}{2} \\ a \cot 2x - b \sin x & \text{for } \frac{\pi}{2} < x \leq \pi \end{cases} \] is continuous for \( 0 \leq x \leq \pi \), we need to ensure that the function is continuous at the points where the definition changes, which are \( x = \frac{\pi}{4} \) and \( x = \frac{\pi}{2} \). ### Step 1: Continuity at \( x = \frac{\pi}{4} \) To ensure continuity at \( x = \frac{\pi}{4} \), we equate the left-hand limit and the right-hand limit: \[ \lim_{x \to \left(\frac{\pi}{4}\right)^-} f(x) = \lim_{x \to \left(\frac{\pi}{4}\right)^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to \left(\frac{\pi}{4}\right)^-} f(x) = \frac{\pi}{4} + a\sqrt{2} \sin\left(\frac{\pi}{4}\right) = \frac{\pi}{4} + a\sqrt{2} \cdot \frac{1}{\sqrt{2}} = \frac{\pi}{4} + a \] Calculating the right-hand limit: \[ \lim_{x \to \left(\frac{\pi}{4}\right)^+} f(x) = 2\left(\frac{\pi}{4}\right) \cot\left(\frac{\pi}{4}\right) + b = \frac{\pi}{2} + b \] Setting the two limits equal gives us the first equation: \[ \frac{\pi}{4} + a = \frac{\pi}{2} + b \] Rearranging this, we have: \[ a - b = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \quad \text{(Equation 1)} \] ### Step 2: Continuity at \( x = \frac{\pi}{2} \) Next, we ensure continuity at \( x = \frac{\pi}{2} \): \[ \lim_{x \to \left(\frac{\pi}{2}\right)^-} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to \left(\frac{\pi}{2}\right)^-} f(x) = 2\left(\frac{\pi}{2}\right) \cot\left(\frac{\pi}{2}\right) + b = 0 + b = b \] Calculating the right-hand limit: \[ \lim_{x \to \left(\frac{\pi}{2}\right)^+} f(x) = a \cot(2 \cdot \frac{\pi}{2}) - b \sin\left(\frac{\pi}{2}\right) = a \cdot 0 - b \cdot 1 = -b \] Setting the two limits equal gives us the second equation: \[ b = -b \] This implies: \[ 2b = 0 \quad \Rightarrow \quad b = 0 \quad \text{(Equation 2)} \] ### Step 3: Substitute \( b \) into Equation 1 Substituting \( b = 0 \) into Equation 1: \[ a - 0 = \frac{\pi}{4} \quad \Rightarrow \quad a = \frac{\pi}{4} \] ### Final Values Thus, the values of \( a \) and \( b \) that make the function continuous are: \[ \boxed{a = \frac{\pi}{4}, \quad b = 0} \]

To find the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} x + a\sqrt{2} \sin x & \text{for } 0 \leq x \leq \frac{\pi}{4} \\ 2x \cot x + b & \text{for } \frac{\pi}{4} < x \leq \frac{\pi}{2} \\ a \cot 2x - b \sin x & \text{for } \frac{\pi}{2} < x \leq \pi ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise (Match the Columns)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Continuity in a Domain (Objective Question I )|7 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise (Fill in the Blank)|1 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise SOLVING SYSTEM OF EQUATIONS (INTEGER ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

If 0 le x le pi/2 then

If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(x cot x+b",",(pi)/(4) le x lt (pi)/(2)),(b sin 2x-a cos 2x",", (pi)/(2) le x le pi):} is continuous in the interval [0,pi] then the values of (a, b) are

The value of a and b such that the function f(x) {:{(-2 sin x", "-pile x le -pi/2 ),(a sin x+b " ," -pi/2 lt x lt pi/2 ),(cos x", " pi/2 le x le pi ):} is continuous in [ - pi , pi ] are

The value of a and b such that the function f(x)={(-2sinx"," , -pi le x le -(pi)/(2)),(a sinx+b",", -(pi)/(2) lt x lt (pi)/(2)),(cosx",", (pi)/(2) le x le pi ):} is continuous in [-pi,pi] are

If 0 le x le 2pi and |cos x | le sin x , the

If f(x)={:{(x sin x", for " 0 lt x le pi/2),(pi/2 sin (pi+x)", for " pi/2 lt x lt pi):} , then