Home
Class 12
MATHS
For the function f (x) = {{:(x/(1+e^(1...

For the function `f (x) = {{:(x/(1+e^(1//x))", " x ne 0),(" 0 , "x = 0):}`, the derivative from the right, `f'(0^(+)) `= … and the derivative from the left, ` f'(0^(-))` = … .

Text Solution

AI Generated Solution

The correct Answer is:
To find the right-hand derivative \( f'(0^+) \) and the left-hand derivative \( f'(0^-) \) of the function \[ f(x) = \begin{cases} \frac{x}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] we will use the definition of the derivative. ### Step 1: Finding the Right-Hand Derivative \( f'(0^+) \) The right-hand derivative at \( x = 0 \) is given by: \[ f'(0^+) = \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} \] Substituting \( f(0) = 0 \): \[ f'(0^+) = \lim_{h \to 0^+} \frac{f(h)}{h} \] For \( h > 0 \): \[ f(h) = \frac{h}{1 + e^{\frac{1}{h}}} \] So we have: \[ f'(0^+) = \lim_{h \to 0^+} \frac{\frac{h}{1 + e^{\frac{1}{h}}}}{h} = \lim_{h \to 0^+} \frac{1}{1 + e^{\frac{1}{h}}} \] As \( h \to 0^+ \), \( \frac{1}{h} \to +\infty \), which implies \( e^{\frac{1}{h}} \to +\infty \). Therefore: \[ f'(0^+) = \lim_{h \to 0^+} \frac{1}{1 + e^{\frac{1}{h}}} = \frac{1}{\infty} = 0 \] ### Step 2: Finding the Left-Hand Derivative \( f'(0^-) \) The left-hand derivative at \( x = 0 \) is given by: \[ f'(0^-) = \lim_{h \to 0^-} \frac{f(0) - f(0 - h)}{h} \] Substituting \( f(0) = 0 \): \[ f'(0^-) = \lim_{h \to 0^-} \frac{0 - f(-h)}{h} = -\lim_{h \to 0^-} \frac{f(-h)}{h} \] For \( h < 0 \): \[ f(-h) = \frac{-h}{1 + e^{\frac{1}{-h}}} \] Thus: \[ f'(0^-) = -\lim_{h \to 0^-} \frac{\frac{-h}{1 + e^{\frac{1}{-h}}}}{h} = -\lim_{h \to 0^-} \frac{-1}{1 + e^{\frac{1}{-h}}} \] As \( h \to 0^- \), \( \frac{1}{-h} \to -\infty \), which implies \( e^{\frac{1}{-h}} \to 0 \). Therefore: \[ f'(0^-) = -\lim_{h \to 0^-} \frac{-1}{1 + 0} = 1 \] ### Final Results Thus, we have: \[ f'(0^+) = 0 \quad \text{and} \quad f'(0^-) = 1 \]

To find the right-hand derivative \( f'(0^+) \) and the left-hand derivative \( f'(0^-) \) of the function \[ f(x) = \begin{cases} \frac{x}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiability at a point (True/False)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiability at a point (Analytical & Descriptive Questions)|14 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiability at a point (Match the Columns)|2 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise SOLVING SYSTEM OF EQUATIONS (INTEGER ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" "0", " x=0):} is not differentiable

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}