Home
Class 12
MATHS
If xe^(xy)=y+sin^2x then at x=0 (dy)/dx=...

If `xe^(xy)=y+sin^2x` then at `x=0` `(dy)/dx=`

Text Solution

Verified by Experts

The correct Answer is:
1

Given, ` xe^(xy) = y+ sin^(2) x` ….(i)
On putting x = 0 , we get
` 0*e^(0)=y+0`
` rArr" " y = 0`
On differentiating Eq. (i) both sides w.r.t. x, we get
`1*e^(xy) +x*e^(xy)(x*(dy)/(dx) + y)=(dy)/(dx) +2 sin x cos x `
On putting x = 0, y = 0, we get
`e^(0)+0(0+0)=[(dy)/(dx)]_("(0,0)")=+2 sin 0 cos 0 `
` rArr" "[(dy)/(dx)]_(("0,0)") = 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If xe^(xy)=y+sin^(2)x then at x=0(dy)/(dx)=

If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x=0 is a.0b . 1c.-1d .none of these

If y=xe^(xy) , then (dy)/(dx) =

If cos (xy) =sin (x+y) ,then (dy)/(dx)

Statement 1: If e^(xy)+ln(xy)+cos(xy)+5=0, then (dy)/(dx)=-y/x . Statement 2: d/(dx)(xy)=0,y is a function of x implies(dy)/(dx)=-y/x .

If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/(dx) at x = 0 is

If sin^(2)x+2cos y+xy=0 then (dy)/(dx)=