Home
Class 12
MATHS
If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-...

If `y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1`, then prove that `(y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]`

Text Solution

Verified by Experts

`y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+c/((x-c))+1`
`y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+x/((x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+x/((x-c))(b/(x-b)+1)`
`=(ax^(2))/((x-a)(x-b)(x-c))+x/((x-c))*x/((x-b))`
`=x^(2)/((x-c)(x-b))(a/(x-1)+1)rArr y= x^(3)/((x-a)(x-b)(x-c))`
` rArr log y = log x^(3) - log (x-a) (x-b)(x-c)`
` rArr log y = 3 log x - log (x-a) - log (x-b) - log (x-c)`
On differentiating, we get
`(y')/y = 3/x - 1/(x-a) -1/(x-b)-1/(x-c) `
`rArr" "(y')/y =(1/x-1/(x-a))+(1/x-1/(x-b))+(1/x-1/(x-c))`
` rArr" "(y')/y = (-a)/(x(x-a))-b/(x(x-b))-c/(x(x-c)) `
`rArr" " (y')/y = a/(x(a-x))+b/(x(b-x))+c/(x(c-x))`
` rArr" "(y')/y = 1/x(a/(a-x)+b/(b-x)+c/(c-x))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then prove that (y')/(y)=(1)/(x)[(a)/(a-x)+(b)/(b-x)+(c)/(c-x)]

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then (y')/(y)=

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 find (dy)/(dx)

(x^(3))/((x-a)(x-b)(x-c))=1+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

If |(a,y,z),(x,b,z),(x,y,c)|=0 , then prove that (a)/(a-x)+(b)/(b-y)+(c)/(c-z)=2

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

If x=b-c+a, y=c-a+b, z=a-b+c , then prove that (b-a) x + (c-b)y +(a-c)z=0