Home
Class 12
MATHS
If |{:(x(1),y(1),1),(x(2),y(2),1),(x(3),...

If `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}|` , then the two triangles with vertices `(x_(1),y_(1))`, `(x_(2),y_(2))`, `(x_(3),y_(3))` and `(a_(1),b_(1))`, `(a_(2),b_(2))` ,`(a_(3),b_(3))` must be congruent.

Text Solution

Verified by Experts

Since, `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}|`
represents area of triangles are equal, which does not impies triangles are congrvent. Hence, given statement is false.
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE AND PAIR OF STRAIGHT LINES

    IIT JEE PREVIOUS YEAR|Exercise AREA AND FAMILY OF CONCURRENT LINES (Analytical & Desriptive Questions)|3 Videos
  • STRAIGHT LINE AND PAIR OF STRAIGHT LINES

    IIT JEE PREVIOUS YEAR|Exercise HOMOGENEOUS EQUATION OF PAIR OF STRAIGHT LINES (Objective Questions I) (Only one correct option)|2 Videos
  • STRAIGHT LINE AND PAIR OF STRAIGHT LINES

    IIT JEE PREVIOUS YEAR|Exercise AREA AND FAMILY OF CONCURRENT LINES (Fill in the Blanks)|1 Videos
  • SOLVED PAPER 2019

    IIT JEE PREVIOUS YEAR|Exercise Paper -2 section-3|4 Videos
  • THEORY OF EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise SOME SPECIAL FORMS|18 Videos

Similar Questions

Explore conceptually related problems

|(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)|=|(a_1,b_1,1),(a_2,b_2,1),(a_3,b_3,1)| then the two triangles with vertices (x_(1), y_(1)), (x_(2), y_(2)), (x_(3), y_(3)) and (a_(1), b_(1)), (a_(2), b_(2)), (a_(3), b_(3)) are

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If, in D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:}, the co-factor of a_(r)" is "A_(r), then , c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=

If (b_(2)-b_(1))(b_(3)-b_(1))+(a_(2)-a_(1))(a_(3)-a_(1))=0 then plove that the circumcenter of the triangle having vertices (a_(1),b_(1)),(a_(2),b_(2)) and (a_(3),b_(3)) is ((a_(2+a_(3)))/(2),(b_(2+)b_(3))/(2))

If the lines a_(1)x+b_(1)y+1=0,a_(2)x+b_(2)y+1=0 and a_(3)x+b_(3)y+1=0 are concurren ow that the points (a_(1),b_(1)),(a_(2),b_(2)) and (a_(3),b_(3)) are collinear

IIT JEE PREVIOUS YEAR-STRAIGHT LINE AND PAIR OF STRAIGHT LINES-AREA AND FAMILY OF CONCURRENT LINES (True/False)
  1. If |{:(x(1),y(1),1),(x(2),y(2),1),(x(3),y(3),1):}|=|{:(a(1),b(1),1),(a...

    Text Solution

    |