Home
Class 12
MATHS
If vecA = (1, 1, 1), vecC = (0,1,-1) are...

If `vecA = (1, 1, 1), vecC = (0,1,-1)` are given vectors, then prove that a vector `vecB` satisfying the equations `vecA xx vecB=vecC` and `vecA*vecB = 3` is `(5/3, 2/3, 2/3).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

If veca=(1,1,1) , vecb=(0,1,-1) are two given vectors then find a vector vecc satisfying vecaxxvecc=vecb and veca.vecc=3 .

If veca=(0,1,-1,) and vecc=(1,1,1) are given vectors then find a vector vecb satisfying vecaxxvecb=vecc and veca.vecb=3

If veca=(0,1,-1,) and vecc=(1,1,1) are given vectors then find a vector vecb satisfying vecaxxvecb+vecc=0 and veca.vecb=3

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are