Home
Class 12
MATHS
If vec a , vec b ,a n d vec c are such ...

If ` vec a , vec b ,a n d vec c` are such that `[ vec a vec b vec c]=1, vec c=lambda vec axx vec b ,` angle, between ` vec aa n d vec b` is `(2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3))` , then the angel between ` vec aa n d vec b` is `pi/6` b. `pi/4` c. `pi/3` d. `pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is a. pi/6 b. pi/4 c. pi/3 d. pi/2

If vec a,vec b, and vec c are such that [vec avec bvec c]=1,vec c=lambdavec a xxvec b, angle, between vec a and vec b is (2 pi)/(3),|vec a|=sqrt(2),|vec b|=sqrt(3) and |vec c|=(1)/(sqrt(3)) then the angel between vec a and vec b is (pi)/(6) b.(pi)/(4) c.(pi)/(3) d.(pi)/(2)

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , , | vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angle between vec a and vec b is pi/6 b. pi/4 c. pi/3 d. pi/2

If vec a , vec b , vec c are three vectors such that | vec a+ vec b+ vec c|=1, vec c=lambda( vec axx vec b)a n d| vec a|=1/(sqrt(2)),| vec b|=1/(sqrt(3)),| vec c|=1/(sqrt(6)) , find the angle between vec aa n d vec bdot

If vec a , vec b , vec c are three vectors such that | vec a+ vec b+ vec c|=1, vec c=lambda( vec axx vec b)a n d| vec a|=1/(sqrt(2)),| vec b|=1/(sqrt(3)),| vec c|=1/(sqrt(6)) , find the angle between vec aa n d vec bdot

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=sqrt3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec aa n d vec b are unit vectors such that ( vec a+ vec b).(2 vec a+3 vec b)xx(3 vec a-2 vec b)=0 , then angle between veca and vec b is a. 0 b. pi//2 c. pi d. indeterminate

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is