Home
Class 12
MATHS
If A is an obtause angle, then (sin^(3)A...

If A is an obtause angle, then `(sin^(3)A-cos^(3))/(sinA-cosA)+(sinA)/(sqrt(a+tan^(2)A))-2tanA cotA.` is always equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/(sqrt(a+tan^(2)A))-2tanA cotA. is always equal to ........ A) 1 B) -1 C) 2 D) -2

If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/(sqrt(1+tan^(2)A))-2tanA cotA. is always equal to

If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/(sqrt(1+tan^(2)A))-2tanA cotA. is always equal to

(sin3A)/(sinA)-(cos3A)/(cosA)=

(sin3A)/(sinA)-(cos3A)/(cosA)=2

Prove that: (1+sinA-cosA)/(1+sinA+cosA) = tanA/2

(cos3A+sin3A)/(cosA-sinA)=

Prove that: (1+sinA-cosA)/(1+sinA+cosA)=tanA/2

If 3cotA=2 , then find the value of (4sinA-3cosA)/(2sinA+3cosA)

((sinA-2sin^(3)A))/((2cos^(3)A-cosA)) = ?