Home
Class 12
MATHS
If cos^-1 (x/2)+cos^-1(y/3)=theta, then ...

If `cos^-1 (x/2)+cos^-1(y/3)=theta, then (x^2-12xycostheta+4y^2=` (A) 36 (B) `-36sin^2theta` (C) `36sin^2theta` (D) `36cos^2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)(x/2)+cos^(-1)(y/3) = theta , prove that 9x^2- 12xycostheta+ 4y^2= 36 sin^(2)theta

If Cos^(-1)(x//2)+Cos^(-1)(y//3)=theta" then "9x^(2)-12xycostheta+4y^(2)=

If cos^(-1)x/2+cos^(-1)y/3=theta , then 9x^2-12 x ycostheta+4y^2 is equal to (a) 36 (b) -36\ sin\ ^2theta (c) 36\ sin\ ^2theta (d) 36\ cos\ ^2theta

If cos^(-1)x/2+cos^(-1)y/3=theta , then 9x^2-12 x ycostheta+4y^2 is equal to (a) 36 (b) -36\ s in\ ^2theta (c) 36\ s in\ ^2theta (d) 36\ cos\ ^2theta

If cos^(-1)x/3+cos^(-1)y/2=theta/2 , then 4x^2-12 x ycostheta/2+9y^2= (a) 36 (b) 36-36costheta (c) 18-18costheta (d) 18+18costheta

If cos^(-1)x/3+cos^(-1)y/2=theta/2 , then 4x^2-12 x ycostheta/2+9y^2= (a) 36 (b) 36-36costheta (c) 18-18costheta (d) 18+18costheta

If "cos"^(-1)(x/y) +"cos"^-1(y/3)= theta, "prove that" 9x^2- 12xy "cos" theta +4y^2 =36 "sin"^2 theta .

If cos^(-1)((x)/(2))+cos^(-1)((y)/(3))=theta, prove that 9x^(2)-12xy cos theta+4y^(2)=36sin^(2)theta

If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos theta+4y^(2)=36sin^(2) theta

If cos^(-1) (x/2) + cos^(-1) (y/3) =alpha then prove that 9x^2-12xycosalpha+4y^2=36sin^2alpha .