Home
Class 12
MATHS
The number of integral values of a in [0...

The number of integral values of a in `[0,10)` so that function, `f(x)=x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2017` assume local minimum value at some `xepsilonR^(-)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of all the possible values of the parameter 'a' so that the function, f(x) = x^(3)-3(7-x)x^(2)-3(9-a^(2))x+2 , assume local minimum value at some x in (-oo, 0) is -

The set of all the possible values of a for which the function f(x)=5+(a-2)x+(a-1)x^(2)-x^(3) has a local minimum value at some x 1 is

All the possible values of the paramter 'a' so that the function , f(x) =x^3-3(7-a)x^2-3(9-a^2)x+2, has a negative point of local minimum

Find the sum of all possible integral values of in [1,100] for which the function f(x)=2x^(3)-3(2+alpha)x^(2) has exactly one local maximum and one local minimum.

Find the sum of all possible integral values of in [1,100] for which the function f(x)=2x^(3)-3(2+alpha)x^(2) has exactly one local maximum and one local minimum.

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

For what value of x, does the function f(x) = x^(2//3) have a local minimum value?

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

For the function, f(x)=sin2x, 0ltxltpi . Find the local maximum and local minimum value.