Home
Class 12
MATHS
ln a DeltaABC, if (cosA)/a=(cosB)/b=(cos...

ln a `DeltaABC`, if `(cosA)/a=(cosB)/b=(cosC)/c` and the side a = 2, then area of the triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then the area of the triangle is

If cosA/a=cosB/b=cosC/cand the side a=2, then area of triangle is

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) . If a=(1)/(sqrt(6)) , then the area of the triangle (in sq unit )is

In DeltaABC if (cosA)/a=(cosB)/b=(cosC)/c Prove that DeltaAB C is equilateral.