Home
Class 12
MATHS
If the curves x^2/a^2+y^2/b^2=1 and x^2/...

If the curves `x^2/a^2+y^2/b^2=1` and `x^2/l^2-y^2/m^2=1` cut each other orthagonally, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves x^2/a^2+y^2/b^2=1 and x^2/25+y^2/16=1 cut each other orthagonally, then a^2-b^2 =

If the curves (x^2)/(a^2)+(y^2)/(b^2)=1 and (x^2)/(l^2)-(y^2)/(m^2)=1 cut each other orthogonally then.....

If the curve ax^(2) + 3y^(2) = 1 and 2x^2 + 6y^2 = 1 cut each other orthogonally then the value of 2a :

The curves 2x^(2) + 3y^(2) = 1 and cx^(2) + 4y^(2) = 1 cut each other orthogonally then the value of c is:

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(l^(2))-(y^(2))/(m^(2))=1 cut each other orthogonally then....

If the curves (x^(2))/(l^(2))+(y^(2))/(m^(2))=1 and (x^(2))/(64)+(y^(2))/(25)=1 cut each other orthogonally then l^(2)-m^(2)

The curves x^2/a+y^2/b=1 and x^2/a_1+y^2/b_1=1 will cut orthogonally if (a-b) =