Home
Class 12
MATHS
If 3^(x+2) - 9^((-1)/x) > 0 then the int...

If `3^(x+2) - 9^((-1)/x) > 0` then the interval of `x` can be

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^(x+2)-9^(-1//x)gt0 , then the interval of x can be

(|x|-1)/(|x|-2) <= 0 then x lies in the interval

(|x|-1)/(|x|-2)<=0 then x lies in the interval

If f(x)=(9x)/(x+2)f or x 1, then in the interval (-3,3) function is

Find the intervals in which f(x) = 2x^(3) - 9x^(2) - 12 x -3 is increasing and the intervals in which f(x) is decreasing.

If x^(2)+6x-27>0;-x^(2)+3x+4>0 then x lies in the interval

Verify the truth of Rolle's Theorem for the following function: f(x) = 4x^2-12 x + 9 in the interval 0 le x le3

Q 9.The function f(x)=-2x^(3)+21x^(2)-60x+41 , in the interval (-oo,1) is: a. 0

Using Lagrange's theorem , find the value of c for the following functions : (i) x^(3) - 3x^(2) + 2x in the interval [0,1/2]. (ii) f(x) = 2x^(2) - 10x + 1 in the interval [2,7]. (iii) f(x) = (x-4) (x-6) in the interval [4,10]. (iv) f(x) = sqrt(x-1) in the interval [1,3]. (v) f(x) = 2x^(2) + 3x + 4 in the interval [1,2].