Home
Class 12
PHYSICS
(d)/(dx)(sqrtx+(1)/(sqrtx))^2=...

`(d)/(dx)(sqrtx+(1)/(sqrtx))^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)(sinh^(-1)(sqrtx)) =

Differentiate the following w.r.t.x (1) (3x +5) (ii) x^(-2) (iii) x^(3//2) (iv) sqrtx - (1)/(sqrtx) (v) (1)/((x +2))

d/(dx)(a^(log_asqrtx))=1/(2sqrtx) where a gt 1 inR^+

Evaluate (d)/(dx)(int_(1//x)^(sqrtx) cos t^(2) dt)

Evaluate (d)/(dx)(int_(1//x)^(sqrtx) cos t^(2) dt)

Evaluate (d)/(dx)(int_(1//x)^(sqrtx) cos t^(2) dt)

The value of (d)/(dx) [tan ^(-1) ((sqrtx(3-x))/(1-3x))] is :

Differentiate tan^(-1)((sqrtx-x)/(1+xsqrt(x))) .