Home
Class 12
MATHS
Let f(x) be a continuous function such t...

Let f(x) be a continuous function such that `int_(n)^(n+1) f(x) dx=n^(3) , ninZ`. Then the value of the integeral `int_(-3)^(3) f(x)` dx, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a contiuous function such a int_(n)^(n+1)f(x)dx=n^(3),n in Z. Then,the value of the intergral int_(-3)^(3)f(x)dx(A)9(B)-27(C)-9(D) none of these

Let f(x) be a contiuous function such a int_n^(n+1) f(x)dx=n^3, n in Z. Then, the value of the intergral int_-3^3 f(x) dx (A) 9 (B) -27 (C) -9 (D) none of these

Let f(x) be a contiuous function such a int_n^(n+1) f(x)dx=n^3, n in Z. Then, the value of the intergral int_-3^3 f(x) dx (A) 9 (B) -27 (C) -9 (D) none of these

If int_(n)^(n+1) f(x) dx = n^(2) +n, AA n in I then the value of int_(-3)^(3) f(x) dx is equal to

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is