Home
Class 12
MATHS
In f (x)= [{:(cos x ^(3),, x lt 0), ( si...

In `f (x)= [{:(cos x ^(3),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0):}` then find the number of points where `g (x) =f (|x|)` is non-differentiable.

Promotional Banner

Similar Questions

Explore conceptually related problems

In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where g (x) =f (|x|) is non-differentiable.

If f (x)= [{:( cos x ^(2),, x lt 0),( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where f (x) =f )|x|) is non-difierentiable.

Let f (x)= [{:(x+1,,, x lt0),((x-1),,, x ge0):}and g (x)=[{:(x+1,,, x lt 0),((x-1)^(2),,, x ge0):} then the number of points where g (f(x)) is not differentiable.

Let f (x)= [{:(x+1,,, x lt0),((x-1),,, x ge0):}and g (x)=[{:(x+1,,, x lt 0),((x-1)^(2),,, x ge0):} then the number of points where g (f(x)) is not differentiable.

If f(x) = [[x^(3),|x| =1] , then number of points where f(x) is non-differentiable is

Using graph find the number of points where g(x) is non differentiable.f(x)=x-3;x 0 or x=0g(x)=f(|x|)+|f(x)

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is