Home
Class 12
MATHS
f(x) = int(x)^(x^(2))(e^(t))/(t)dt, then...

`f(x) = int_(x)^(x^(2))(e^(t))/(t)dt`, then `f'(t)` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x^(2))int_(4)^(x)(4t^(2)-2f'(t)) dt,then f'(4) is equal to:

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, thenf '(x)+f(x) is equal to (a)-cos x(b)-sin x(c)int_(0)^(x)(x-t)f(t)dt (d) 0

If f(x)=cosx-int_(0)^(x)(x-t)f(t)dt , then f''(x)+f(x) is equal to a) -cosx b) -sinx c) int_(0)^(x)(x-t)f(t)dt d)0

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in