Home
Class 12
MATHS
Let vecp,vecq, vecr be three mutually pe...

Let `vecp,vecq, vecr` be three mutually perpendicular vectors of the same magnitude. If a vector `vecx` satisfies the equation
`vecpxx{vecx-vecq)xxvec p}+vecq xx{vecx-vecr)xxvecq}+vecrxx{vecx-vecp)xxvecr}=vec0`,
then `vecx` is given by

Promotional Banner

Similar Questions

Explore conceptually related problems

vecp, vecq and vecr are three mutually prependicular vectors of the same magnitude . If vector vecx satisfies the equation vecp xx((vecx-vecq) xxvecp)+ vecq xx ((vecx -vecr)xxvecq)+vecrxx((vecx-vecp)xxvecr)=vec0 " then " vecx is given by

Sholve the simultasneous vector equations for vecx aedn vecy: vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vec!=0

Sholve the simultasneous vector equations for vecx and vecy: vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vecc!=0

Sholve the simultasneous vector equations for vecx and vecy: , vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vec!=0

Let vecp, vecq, vecr, vecs are non - zero vectors in which no two of them are perpenedicular and no three of them are coplanar. If (vecpxxvecr).(vecpxxvecs)+(vecrxx vecp).(vecqxxvecs)=k[(vecpxxvecq).(vecsxxvecr)] , then the value of (k)/(2) is equal to

Let vecp, vecq, vecr, vecs are non - zero vectors in which no two of them are perpenedicular and no three of them are coplanar. If (vecpxxvecr).(vecpxxvecs)+(vecrxx vecp).(vecqxxvecs)=k[(vecpxxvecq).(vecsxxvecr)] , then the value of (k)/(2) is equal to

if vector vecx satisfying vecx xx veca+ (vecx.vecb)vecc =vecd is given by vecx = lambda veca + veca xx (vecaxx(vecdxxvecc))/((veca.vecc)|veca|^(2))