Home
Class 11
MATHS
If log(x+z)+log(x-2y+z)=2log(x-z)," then...

If `log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2log(x-z)-log(x-2y+z)=log(x+z), then x,y and z are in

STATEMENT-1 : If log (x + z) + log (x -2y +z) = 2 log (x -z) then x,y,z are in H.P. STATEMENT-2 : If p , q , r in AP and (a -x)/(px) = (a-y)/(qy) = (a-z)/(rz) , then x, y, z are in A.P. STATEMENT-3 : If (a + b)/(1 - ab), b, (b + c)/(1 - bc) are in A .P. then a, (1)/(b) , c are in H.P.

If ln(x+z)+ln(x-2y+z)=2ln(x-z) then

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

If log x:log y:log z=(y-z):(z-x):(x-y), then

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3