Home
Class 12
MATHS
The sum of the distinct real values of ...

The sum of the distinct real values of mu for which the vectors, `muhat(i)+hat(j)+hat(k),hat(i)+muhat(j)+hat(k),hat(i)+hat(j)+muhat(k)` are co-planar is :

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the distinct real values of μ for which the vectors, muhat(i)+hat(j)+hat(k),hat(i)+muhat(j)+hat(k),hat(i)+hat(j)+muhat(k) are co-planar is :

Show that the vectors -hat(i) + hat(j) - hat(k), hat(i) + hat(j) + hat(k) and hat(i) + hat(k) are coplanar.

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

Find the value of lamda so that the vectors hat(i)-hat(j)+hat(k),2hat(i)+hat(j)-hat(k) and lamdahat(i)-hat(j)+lamdahat(k) are coplanar.

The number of distinct real values of lambda , for which the vectors -lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k) are coplanar, is

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.