Home
Class 12
MATHS
Derivative of tan ^(-1) ((sqrt( 1+x^(2)...

Derivative of ` tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

The derivative of Tan ^(-1)"" (sqrt(1 + x ^(2))-1)/(x) w.r.t. Tan ^(-1) "" (2x sqrt(1-x ^(2)))/(1 - 2 x ^(2))at x =0 is

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

The derivative of Tan ^(-1) "" (sqrt(1 + x ^(2))-1)/(x) w.r.t. Tan ^(-1) x is

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) at x = 0.