Home
Class 11
MATHS
If A(x1, y1),B(x2, y2),C(x3, y3) are th...

If `A(x_1, y_1),B(x_2, y_2),C(x_3, y_3)` are the vertices of a triangle, then the equation `|x y1x_1y_1 1x_2y_3 1|+|x y1x_1y_1 1x_3y_3 1|=0` represents (a)the median through `A` (b)the altitude through `A` (c)the perpendicular bisector of `B C` (d)the line joining the centroid with a vertex

Promotional Banner

Similar Questions

Explore conceptually related problems

If A(x_1,y_1),B(x_2,y_2),C(x_3,y_3) are the vertices of the triangle then find area of triangle

If A(x_(1),y_(1)),B(x_(2),y_(2)),C(x_(3),y_(3)) are the vertices of the triangle then show that:'

A(x_1,y_1),B(x_2,y_2),C(x_3,y_3), " are the vetice of a triangle, then equation " |{:(x,y,l),(x_1,y_1,1),(x_2,y_2,1):}|+|{:(x,y,l),(x_1,y_1,1),(x_3,y_3,1):}|=o represents

If A(x_(1),y_(1)),B(x_(2),y_(2)) and C(x_(3),y_(3)) are the vertices of a triangle then excentre with respect to B is

A(x_(1),y_(1)) , B(x_(2),y_(2)) , C(x_(3),y_(3)) are the vertices of a triangle then the equation |[x,y,1],[x_(1),y_(1),1],[x_(2),y_(2),1]| + |[x,y,1],[x_(1),y_(1),1],[x_(3),y_(3),1]| =0 represents

If A(x_1,y_1),B(x_2,y_2) and C(x_3,y_3) are the vertices of triangleABC ,find the coordinates of the centroid of the triangle.

If the points A(x_1,y_1), B(x_2,y_2) and C(x_3,y_3) are collinear, then area of triangle ABC is:

A(3x_(1), 3y_(1)), B(3x_(2), 3y_(2)), C(3x_(3), 3y_(3)) are vertices of a triangle with orthocentre H at (x_(1)+ x_(2)+ x_(3), y_(1)+y_(2)+y_(3)) , then the angleABC=

If A(3x_(1),3y_(1)),B(3x_(2),3y_(2)),C(3x_(3),3y_(3)) are vertices of a triangle with orthocentre H at (x_(1)+x_(2)+x_(3),y_(1)+y_(2)+y_(3)) then the /_ABC=

If A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the median through A . Show that : |(x, y, 1), (x_1, y_1, 1), (x_2, y_2, 1)| + |(x, y, 1), (x_1, y_1, 1), (x_3, y_3, 1)|=0