Home
Class 12
MATHS
The locus of pole of tangents to the...

The locus of pole of tangents to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` with respect to the parabola `y^(2)=4ax,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of poles of tangents to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 with respect to concentric ellipse (x^(2))/(alpha^(2))+(y^(2))/(beta^(2))=1 is

The locus of poles of tangents to the ellipse (x^(2))/(a^(2))+(y^(2)))/(b^(2))=1 with respect to concentric ellipse (x^(2))/(alpha^(2))+(y^(2))/(beta^(2))=1 is

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The locus of the poles of tangents to the director circle of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 with respect to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 is

The locus of the poles of tangents to the director circle of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 with respect to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 is

The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 w.r.t. the circle x^2 + y^2 = a^2 is: