Home
Class 12
MATHS
If f(x)={(-4sinx+cosx, "for",xle-(pi)/2)...

If `f(x)={(-4sinx+cosx, "for",xle-(pi)/2),(a sin x+b,"for",-(pi)/2ltxlt(pi)/2),(cosx+2,"for",xge(pi)/2):}` is continuous, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"for",-(pi)/(2)lexle(pi)/(2)),(cosx,"for",xge(pi)/(2)):} which is continuous at everywhere The value of B is

Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"for",-(pi)/(2)lexle(pi)/(2)),(cosx,"for",xge(pi)/(2)):} which is continuous at everywhere The value of A is

Consider the function f(x)={{:(-2sinx,if,xle-(pi)/(2)),(Asinx+B,if,-(pi)/(2)ltxlt(pi)/(2)),(cosx,if,xge(pi)/(2)):} Which is continuous everywhere. The value of B is

Consider the function f(x)={{:(-2sinx,if,xle-(pi)/(2)),(Asinx+B,if,-(pi)/(2)ltxlt(pi)/(2)),(cosx,if,xge(pi)/(2)):} Which is continuous everywhere. The value of A is

Let f(x)={{:(-2sinx" if "xle-(pi)/(2)),(Asinx+B" if "-(pi)/2ltxlt(pi)/(2)),(cosx" if " xge(pi)/(2)):} . Then

The value of a and b such that the function f(x)={(-2sinx"," , -pi le x le -(pi)/(2)),(a sinx+b",", -(pi)/(2) lt x lt (pi)/(2)),(cosx",", (pi)/(2) le x le pi ):} is continuous in [-pi,pi] are

Find alpha and beta, so the function f (x) defined by f(x) =-2 sin x, "for" -pi le x le-pi/2 =alpha sinx+beta"for" -pi/2lt x lt pi/2 =cosx , "for" pi/2 le x le pi, is continuous on [-pi, pi].

If f(x) = -4sinx+cosx for x =pi/2 is continuous then