Home
Class 12
MATHS
If f'(2)=6 and f'(1)=4 ,then lim(x rarr0...

If `f'(2)=6` and `f'(1)=4` ,then `lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1))` is equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

-If f(x) is a quadratic expression such that f(-2)=f(2)=0 and f(1)=6 then lim_(x rarr0)(sqrt(f(x))-2sqrt(2))/(ln(cos x)) is equal to

If f'(0)=3 then lim_(x rarr0)(x^(2))/(f(x^(2))-6f(4x^(2))+5f(7x^(2))=)

If f'(2)=4 then,evaluate lim_(x rarr0)(f(1+cos x)-f(2))/(tan^(2)x)

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(x)=x,x 0 then lim_(x rarr0)f(x) is equal to

Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to