Home
Class 12
MATHS
Prove that : int(-a)^(a)f(x)dx =2 int(...

Prove that :
`int_(-a)^(a)f(x)dx =2 int_(a)^(0) f(x)dx, if f(x) ` is even funtion
=0 , if f(x) is off fuction.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

int_(-a)^(a)f(x)dx= 2int_(0)^(a)f(x)dx, if f is an even function 0, if f is an odd function.

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx