Home
Class 12
MATHS
If y = x ^(n-1) log x, then xy (1)=...

If `y = x ^(n-1) log x,` then `xy _(1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(n-1) log x , prove that (x^2y_2)+(3-2n)xy_1+(n-1)^2 .y=0 where y_1=dy/dx and y_2=(d^2)/(dx^2) .

If y=x^(n-1)ln x then x^(2)y_(2)+(3-2n)xy_(1) is equal to -(n-1)^(2)y(b)(n-1)^(2)y-n^(2)y(d)n^(2)y

If y=log(logx)," then "xy_(2)+x(y_(1))^(2)=

If m sin^(-1) x = log _(e) y , then (1 - x^(2)) y'' - xy' =

Show that if x^y + y^x = m^n , then: dy/dx = - (y^x logy +yx^(y-1))/(x^y log x + xy^(x-1))

If y= log( log 2x) , show that xy_2 + y_1 (1+ xy_1) = 0

If y =a cos (log x) + b sin (log x) then x ^(2) y _(2) + xy _(1)+y=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=