Home
Class 12
MATHS
मान लीजिए f(x)={(x^(p)"sin"1/x",",x ne 0...

मान लीजिए `f(x)={(x^(p)"sin"1/x",",x ne 0),(0",",x=0):}` तब `x=0` पर `f(x)` सतत है परन्तु अवकलनीय नहीं, यदि-

Promotional Banner

Similar Questions

Explore conceptually related problems

यदि f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} बिन्दु x=0 , तब

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

If f(x)={(x^(k) sin((1)/(x))",",x ne 0),(0",", x =0):} is continuous at x = 0, then