Home
Class 12
MATHS
त्रिभुज PQR में, angleR=(pi)/(2) तथा यदि...

त्रिभुज PQR में, `angleR=(pi)/(2)` तथा यदि `tan((P)/(2))` और `tan((Q)/(2))`, समीकरण `ax^(2)+bx+c=0` के मूल हैं, तब

Promotional Banner

Similar Questions

Explore conceptually related problems

In trianglePQR, angleR = (pi)/(2) . If tan((P)/(2)) " and " tan ((Q)/(2)) are roots of equation, ax^(2) + bx + c = 0 , then which of the following is true.

In a triangle PQR " if " angle R = (pi)/(2) if tan (P/2) and tan (Q/2) are the roots of ax^2 +bx +c=0 , a ne 0 then

A triangle PQR,/_R=90^(@) and tan((P)/(2)) and tan((Q)/(2)) roots of the ax^(2)+bx+c=0 then prove that a+b=c

In a Delta PQR,angleR=pi/2 . If tan (P/2) and tan (Q/2) are the roots of ax^2+bx+c=0,a ne 0 , then

In a triangle PQR, angleR = pi //2 . If tan (P/2) and tan (Q/2) are the roots of the equations ax^(2) + bx + c = 0 where a ne 0 , then