Home
Class 12
MATHS
The integral int(0)^(a) (g(x))/(f(x)+f(a...

The integral `int_(0)^(a) (g(x))/(f(x)+f(a-x))dx` vanishes, if

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(a)(g(x))/(f(x)+f(a-x))dx=0 , then

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(2a)[(f(x))/({f(x)+f(2a-x)})]dx is equal to a

Prove that the value of the integral, int_(0)^(2a)(f(x))/(f(x)+f(2a-x))dx is equal to a.

The value of the integral int_0^(2a)[(f(x))/({f(x)+f(2a-x)})]dx "is equal to "a

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

If f(x) is integrable on [0,a], then int_0^(a) (f(x))/(f(x)+ f(a-x)) dx =