Home
Class 12
MATHS
If |z+1+3i|=1 ,then the least value of |...

If `|z+1+3i|=1` ,then the least value of `|z|` is `sqrt(k)+m` ,then evaluate `sqrt(k-m)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-2-3i|=1 ,then the greatest value of |z| is sqrt(k)+m, then evaluate sqrt((k+m)+2)

If z lies on the locus |(z+2)/(z+i)|=2 and by transformation w rarr z+((4)/(3)+sqrt((20)/(9))i) (say) a new locus is formed,then the greatest value of |w| is (2)/(3)(sqrt(m)+sqrt(n)) ; then evaluate |m-n|

If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

If z = (-2)/(1 + sqrt(3i)) , then the value of age z is

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If z= frac{-2}{1+sqrt3i} , then the value of arg(z) is

If z=(sqrt3-i)/2 , then Find the. value of z^33

If |z = (2)/(z)| = 2. show that the greatest and least value of |z| are sqrt(3)+1 and sqrt(3) - 1 respectively.

If |Z|=3 the maximum value of |Z-1+sqrt(3)i | is