Home
Class 12
MATHS
If tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=...

If `tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=1+sqrt((2x)/(1+x^(2)))` where `x, y in R`, then find the least possible value of y.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(2)(pi(x+y))+cot^(2)(pi)x+y=1+sqrt((2x)/(1+x^(2))) where x,y are real then the least positive value of y is

. If tan^2 pi(x+y)+cot^2pi (x+y)=1+sqrt(2x)/(1+x^2) where x,y in RR then the least positive value of y is

If tan^(2)(x+y)+cot^(2)(x+y)=1-2x-x^(2), then (where, n in Z )

If tan^(-1)(1/y)=-pi+cot^(-1)y , where y=x^2-3x+2 then find the value of x.

If tan^(-1)((1)/(y))=-pi+cot^(-1)y, where y=x^(2)-3x+2, then find the value of x

If tan^-1(1/y)=-pi+cot^-1 y, where y=x^2-3x+2, then find the value of x

If tan^-1(1/y)=-pi+cot^-1 y, where y=x^2-3x+2, then find the value of x

If y=tan^(-1) sqrt(x^Y(2)+y^(2))+cot^(-1) sqrt(x^(2)+y^(2)),"then " dy/dx=