Home
Class 12
MATHS
lim(x rarr o) (1/x^4- (int0^(x^2) e^(-u^...

`lim_(x rarr o) (1/x^4- (int_0^(x^2) e^(-u^2) du)/x^6)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1)/(x^(5))int_(0)^(x)e^(-t^(2))dt-(1)/(x^(4))+(1)/(3x^(2)))

lim_(x rarr 0) ((1+x+x^2)-e^x)/x^2 =

lim_(x rarr oo) (int_(0)^(2x) xe^(2)dx)/(e^(4x^(2))) equals :

The value of lim_(x rarr 0) (int_0^(x^2)sec^2tdt)/(x sinx) is :

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

lim_(x rarr 0) ((1-e^(x))sin x)/(x^(2)+x^(3)) =

lim_(x rarr 0)(e^(x^3)-1-x^3)/(sin^6(2x)=