Home
Class 11
MATHS
The equation 4sin^2x + 4sinx + a^2-3 = 0...

The equation `4sin^2x + 4sinx + a^2-3 = 0` possesses a solution if 'a' belongs to the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation 4sin^(2)x+4sin x+a^(2)-3=0 possesses a solution if 'a' belongs to the interval

The equation cos^(4)x-(a+2)cos^(2)x-(a+3)=0 possesses a solution if

The equation "sin"^(4) x - (k +2)"sin"^(2) x - (k + 3) = 0 possesses a solution, if

The equation "sin"^(4) x - (k +2)"sin"^(2) x - (k + 3) = 0 possesses a solution, if

The equation "sin"^(4) x - (k +2)"sin"^(2) x - (k + 3) = 0 possesses a solution, if

The equation 2sin^(2)x=8-k(2-sinx) possesses a solution if

The equation x^2+2(gamma+1)x+a(a-4)=0 has negative roots only if gamma belongs to the interval _________ .

If the equation sin^4x-(k+2)sin^2x-(k+3)=0 has a solution then k must lie in the interval;

If the equation sin^4x-(k+2)sin^2x=(k+3) has a solution then ' k ' must lie in the interval: a. (-4,-2) b. [-3,2) c. (-4,-3) d. [-3,-2]