Home
Class 12
MATHS
inte^(x)((x-1)(x-logx))/(x^(2))dx is equ...

`inte^(x)((x-1)(x-logx))/(x^(2))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int(log(x+1)-logx)/(x(x+1))dx is equal to :

int_(1)^(x) (logx^(2))/x dx is equal to

int (x-1)/(x(x-logx))dx

int((x+1)(x+logx)^2)/(2x)dx

int((x+1)(x+logx)^2)/(2x)dx

int1/(x(1-logx)^(2))dx=

int{(logx-1)/(1+(logx)^(2))}^(2)dx is equal to a) (logx)/((logx)^(2)+1)+c b) (x)/(x^(2)+1)+c c) (xe^(x))/(1+x^(2))+c d) (x)/((logx)^(2)+1)+c

int(sqrt(x^(2)+1)[log(x^(2)+1)-2logx])/(x^(4)) dx is equal to