Home
Class 12
MATHS
An equilateral is inscribed in the parab...

An equilateral is inscribed in the parabola `y^(2)=8x` with one of its vertices is the vertex of the parabola. Then the length of the side of that triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

An equilateral triangle is inscribed in the parabola y^(2) = 8x with one of its vertices is the vertex of the parabola. Then, the length or the side or that triangle is

An equilateral triangle is inscribed in the parabola y^(2) = 8x with one of its vertices is the vertex of the parabola. Then, the length or the side or that triangle is

An equilateral teiangle is inscribed in the parabola y^(2)=x whose one vertex is the vartex of the parabola. Then the length of a side of the triangle is-

An equilateral triangle is inscribed in the parabola y^(2)=4ax , where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

An equilateral triangle is inscribed in the parabola y^(2)=4ax where one vertex is at the vertex of the parabola.Find the length of the side of the triangle.

An equilateral triangle is inscribed in the parabola y^(2)=4ax , where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.