Home
Class 12
PHYSICS
If vecAxxvecB=vecC, then choose the inco...

If `vecAxxvecB=vecC`, then choose the incorrect option : [`vecA and vecB` are non zero vectors]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a non zero vector which is perpendicular to veca+vecb+vecc and is represented as vecd=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) . Then,

Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a non zero vector which is perpendicular to veca+vecb+vecc and is represented as vecd=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) . Then,

If (vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc are non zero vectors then (A) veca,vecb and vecc can be coplanar (B) veca,vecb and vecc must be coplanar (C) veca,vecb and vecc cannot be coplanar (D) none of these

If (vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc are non zero vectors then (A) veca,vecb and vecc can be coplanar (B) veca,vecb and vecc must be coplanar (C) veca,vecb and vecc cannot be coplanar (D) none of these

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vecP = (vecbxxvecc)/([vecavecbvecc]),vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is

If veca, vecb, vecc non-zero vectors such that veca is perpendicular to vecb and vecc and |veca|=1, |vecb|=2, |vecc|=1, vecb.vecc=1 . There is a non-zero vector coplanar with veca+vecb and 2vecb-vecc and vecd.veca=1 , then the minimum value of |vecd| is

If vecaxxvecb=lambda vecc for a non-zero scalar 'lambda' and non-zero vectors veca,vecb and vecc , then find veca*vecc .