Home
Class 11
MATHS
The n t h derivative of x e^x vanishes...

The `n t h` derivative of `x e^x` vanishes when (a)`x=0` (b) `x=-1` (c)`x=-n` (d) `x=n`

Promotional Banner

Similar Questions

Explore conceptually related problems

The nth derivative of xe^(x) vanishes when (a) x=0( b) x=-1( c) x=-n( d )x=n

The derivative of y=(1-x)(2-x)....(n-x) at x=1 is (a) 0 (b) (-1)(n-1)! (c) n !-1 (d) (-1)^(n-1)(n-1)!

The derivative of y=(1-x)(2-x)....(n-x) at x=1 is (a) 0 (b) (-1)(n-1)! (c) n !-1 (d) (-1)^(n-1)(n-1)!

The derivative of y=(1-x)(2-x)....(n-x) at x=1 is (a) 0 (b) (-1)(n-1)! (c) n !-1 (d) (-1)^(n-1)(n-1)!

The derivative of y=(1-x)(2-x)...(n-x) at x=1 is (a) 0( b) (-1)(n-1)!(c)n!-1(d)(-1)^(n-1)(n-1)!

The n t h derivative of the function f(x)=1/(1-x^2)[w h e r ex in (-1,1)] at the point x=0 where n is even is (a) 0 (b) n ! (c) n^n C_2 (d) 2^n C_2

Find the derivative of the w.r.t.x ax ^(2n) log x + b x ^(n) e ^(-x)

Let f(x)={a x^2+1,x >1 ; x+1/2,x<=1.t h e n ,f(x) is derivable at x=1, if a=2 (b) a=1 (c) a=0 (d) a=1/2

ifint(dx)/(x^2(x^n+1)^(((n-1)/n)) )=-[f(x)]^(1/n)+c ,t h e nf(x)i s (a) (1+x^n) (b) 1+x^(-1) (c) x^n+x^(-n) (d) none of these