Home
Class 11
MATHS
Prove that (sin (A-B))/(sin (A+B))=(a^(2...

Prove that `(sin (A-B))/(sin (A+B))=(a^(2)-b^(2))/(c^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(sin(A-B))/(sin(A+B))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.1|12 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.2|11 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.12|20 Videos
  • SOLVED PAPER 10

    FULL MARKS|Exercise PART-IV|8 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    FULL MARKS|Exercise Additional Questions Solved|19 Videos

Similar Questions

Explore conceptually related problems

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that sin ( A + B) sin (A - B) = sin^(2) A - sin^(2)B .

Prove that (sin (4A - 2B) + sin (4B - 2A))/(cos (4A - 2B) + cos (4B - 2A)) = tan (A + B)

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

In a triangleABC, " if "(sin A)/(sin C)=(sin(A-B))/(sin (B-C))," prove that "a^(2),b^(2),c^(2) are in Artithmetic Progression.

In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

In a triangleABC, " prove that "(sin B)/(sin C)=(c-a cos B)/(b-a cos C)