Home
Class 11
MATHS
Prove that tan^(-1)((1)/(7))+tan^(-1)((1...

Prove that `tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(=-1)((2)/(9))`

Text Solution

Verified by Experts

The correct Answer is:
`tan^(-1) ""(27)/(11)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.1|12 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.2|11 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.12|20 Videos
  • SOLVED PAPER 10

    FULL MARKS|Exercise PART-IV|8 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    FULL MARKS|Exercise Additional Questions Solved|19 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((1)/(4))+tan^(-1)((2)/(11))=

Prove that 2tan^(-1)((2)/(3))=tan^(-1)((12)/(5))

Prove thate tan^(-1)((2)/(11))+tan^(-1)((7)/(24))=tan^(-1)((1)/(2))

Prove that cos^(-1)((4)/(5))+tan^(-1)((3)/(5))=tan^(-1)((27)/(11))

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))

Prove that : 2 tan^(-1) (1/3) +tan^(-1) (1/6) = tan^(-1) (22/21)

tan^(-1) (1/2) + tan^(-1) (1/3)=…..

Prove that : tan^(-1) (1/2 ) + tan^(-1) (1/3) = pi/4