Home
Class 11
MATHS
Prove that tan^(-1)((m)/(n))-tan^(-1)((m...

Prove that `tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=(pi)/(4).`

Text Solution

Verified by Experts

The correct Answer is:
`pi/4`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.1|12 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.2|11 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.12|20 Videos
  • SOLVED PAPER 10

    FULL MARKS|Exercise PART-IV|8 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    FULL MARKS|Exercise Additional Questions Solved|19 Videos

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3), …..a_(n) is an arithmetic progression with common difference d. Prove that tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+…+tan^(-1)((d)/(1+a_(n)a_(n-1)))]=(a_(n)-a_(1))/(1+a_(1)a_(n))

sum_(m-1)^ntan^(-1)((2m)/(m^4+m^2+2)) is equal to (a) tan^(-1)((n^2+n)/(n^2+n+2)) (b) tan^(-1)((n^2-n)/(n^2-n+2)) (c) tan^(-1)((n^2+n+2)/(n^2+n)) (d) none of these

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that (1-tan^2(pi/4-A))/(1+tan^2(pi/4-A))=sin2Adot

sum_(r=1)^nsin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1)))) is equal to (a) tan^(-1)(sqrt(n))-pi/4 (b) tan^(-1)(sqrt(n+1))-pi/4 (c) tan^(-1)(sqrt(n)) (d) tan^(-1)(sqrt(n)+1)

Prove that (a_(1)^(m)+a_(2)^(m)+….+a_(n)^(m))/(n)lt(a_(1)+a_(2)+..+a_(n))/(n)^(m) If 0ltmlt1 and a_(i)gt0 for all I.

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

For any positive integer (m,n) (with ngeqm ), Let ((n),(m)) =.^nC_m Prove that ((n),(m)) + 2((n-1),(m))+3((n-2),(m))+....+(n-m+1)((m),(m))

Prove the quotient rule using a^m/a^n=a^(m-n)